CS 331, Fall 202S	Today: - Logistics
1	-Background
lecture 1 (8/25)	· Mu (for
•	· Asymptocs
LOO:STICS	· Pata Structures
	- Order of magnitude
We use the following webs.	tes Recusion
1) Coure webs: 7e	- MUltiplication
(Kitian.g:thub.io/cs331_ta	25. html)
_ (ecture notes, HW posted	> Lecture feedback
- Syllakus, course into	What made the 12,14 serse!
- Feedback forms	TAS will go ove in sections.
LEGGO SELONO (OVE 1)	-> Notes feedback
2) 6)	Typoes, confushy examples
- Announcements, practice te	sts.
- Jack	0 160
- Ask questions about lectur	e Mw

3) (2012)	Grade breskdown
- HW torn-n, ostables released	40% HW (lovest großes)
- Lecture V:2005	30% Midterns (2x)
Some notes	30% Final exum
- No AI on HW! Best opportunit	M to practice for tests.
Acceptable use - asking to explain l	
- Coding component	
E/ coding question /HW, Python w) state code
(It me know early if conterns of	but bocks nowd.
- Tip: ask questions early, use (Ed. fordsork forms)	H+ girmrions
Porodisms Toolk4s	Hardners Wilderness
	- Complexity - Interview - tob
- Dynanic - (orthuou) Programmy - Randomited	- Research
1000 - (Story)	

Bockground: Induction (Part I, Section 2)

You want to prove a Statement S(n) for all NEW.

e.g. S(n): There are 2" subsets of (n) = \$1,2,-,n}

Induction brilds "machines" to generate now statements
out of 610 ones. Example: "basic induction"

(i) Is(i) is true base (De

(2) [S(n) is true inductive step

This can prove any S(n): S(1)=> S(2)=> S(3)...=> S(60)...

not contained to (not): (not solutions of (not)

Example (13:m: For all
$$x \in [R, n \in N]$$
)

 $x^{n}-1 = (x-1)(\frac{n}{2}x^{i})$
 $x^{n}-1 = (x-1)(\frac{n}{2}x^{i})$
 $x^{n}-1 = (x-1)(\frac{n}{2}x^{i})$
 $x^{n}-1 = (x-1)(\frac{n}{2}x^{i})$
 $x^{n}-1 = (x-1)\sum_{i=0}^{n-1}x^{i}$
 $x^{n}-1 = (x-1)\sum_{i=0}^{n-1}x^{i}$
 $x^{n}-1 = (x-1)\sum_{i=0}^{n-1}x^{i}$
 $x^{n}-1 = (x-1)(x^{n}+\sum_{i=0}^{n-1}x^{i})$
 $= (x^{n+1}-x^{n})+(x-1)\sum_{i=0}^{n-1}x^{i}$
 $= (x-1)(x^{n}+\sum_{i=0}^{n-1}x^{i})$

$$= 90 \left(|+1+l_3 + - + l_F \right) = 90 - \frac{l-1}{l_{+1}-1}$$
(avoint 90 l + 90 l + 90 l + 90 l + 100 l + 10

Sum of cycometric series.

Background: Asymptotics (Part I Section 3)
In moth as long as you can prove all S(n), happy.
You can use as many steps as you want.
[N 2/gos we we sbout efficiency alons with correctness
In this class, N = size of input to problem
How to compare Algo 1: solves in the time Algo 2: solves in gun) time
Philosophy It n is small, Algo 1,2 both fast
We see about performance as N -> 00 - 1'354mptofics"
Me 300:
O(O(N))

 $O(\mathfrak{g}(n))$ $O(\mathfrak$

Three main function types in this class:

(5,00 v G₁, ...) (xporontia)

 $(u_0, 15u_2, u_5, 3, ...)$ Polynomial

(logn, 31094n, logn +2,...) Polyloger. thm. C

Helpful rule

₩ (>) Exponential >> Polynomial 0 C d

 $M_p = M(\log_3(u)) A p > 0$ Johnson >> Polylosomil 270

Exercise | Park the following asymptotically

Noon 100000, 105,000 (n) N-001 N3N

Background: Data Structw	ves (Part I, Section)	
Assured bactground, note	s provide proofs.	
Make sure you're comforts		
General rule: In this class	s, you can use anything	~5 d
notes as true myport blood	F. Use following APIs	"for free"
	Heap . W.7	O(n) O(loslos)
· Delete OU)	· Exploit Win	((m)(m))
· Grand O(1)	· Delete	((n)col)
Lanced List 0(1)	BST Insert	O(lustra)
· Insert O(1)	· Delete	(Inscri)
(chines insex)	· Query	((v)cv)
· Delate OCI) (chorages holes)	· Sesch	O(los(N))
· Query O(1)	1 1 - 10/10/ 190/ 0 1 1 1 1 .	0(1)
(ned) 2000(s)	· Insert	C(1) (only:n
Stack/Queve) Based on	until Part VIII - Search	0(1)
Sleep where I best list	· Delite	0(1)

Exercise Which is professle?

Array Us. Linked List

· You want to insert in between adjacent elements

· You want to query the ith slot in the list

Heap us. BST

· You want to first the ith larsest element of unserted list

14	-3	200	0.5	1.0	;=	3	Ans: () . (
<u> </u>	$\overline{}$							

(>> N) Values of i horsely gitterent

Orders of magnitude (Part II, Section 4)

Taxorony of runthes:

polylog < (newy-) linear << polynomia) < exponential

M < mlosun < mlosun < nlosun < r< m

Solve Searns

Solve Searns

Solve Searns

Solve Searns

Solve Searns

We will Give about log factors in this class.

(auest: what constants?

(by (n) > In if n & 10?

We will be upfront about when constants are large, usually no problem.

Characterstic of
"brute-force" solution

f(n) = ch, c> |

Part VIII: When

Port VIII: When is there nothing better to do?

eg. C=2 N=250 C^n \Rightarrow # praides \therefore \therefore where

Pecursive algorithms (Part II, Section 1)

To analyze an algo: 1) Proof of correctness

2) Analyze runtine (rest lecture)

How to anyze correctness?

Complex Algo (inputs)

Ster 2

Subroutine, (inputs')

Subroutine 2 (inputs")

Ster 3

1) Assure 211 Schowines 2re correct. Are then "Stitched together" Correctly?

Schooline 2 (inputs") 2) Are all the schoolines Stee 3 correct? Prove it.

e.g. to get resdy for dass,

put on clothes

pack bay

Stat Giftee machine

This unit's them: particular type of also
[Recursian] (ley idex: only use also itself as subsortine
Pecurine Algo (size or input): Step
Step 2 Pecurine Also (size n'an input) Step 3 Pecurine Also (size n'an input)
2) Are It the subrother AKA "recursion fairy"
e-5. to paint a forcer paint left half, paint vight hal
Peringue algorithm is like an efficient
proof by Strong induction.

Multplication (Part II, Section 2) Basic model: Add, subtact, muttary 1-digit the in O(1). [Warnup | How expensive is adding n-dist #s? 0=123456 grade-School Burtine: 3/50: 68ch + 6=987654 Output takes O(1) = | | | | | | | How shout multiplication? 2=123456 x b= 987654 493824 Kurthe: 740736 $\mathcal{O}(n_s)$ 8604192

(In recursion help? Wart: Smaller Subproblems that if solved, make progress [dea 1: divide-and-conquer CJ. 123456 N=G $9 = 9^{1} \cdot 10_{y5} + 9^{0}$ 3, 30 $b = b_1 \cdot 10^{0/2} + b_0$ 987654 By "FOIL" b₁ bo $3p = 3!p! \cdot [0_0 + (9!p^0 + 9^0p!) \cdot [0_{\sqrt{5}} + 9^0p^0]$ 4 2-disit multiplications $T(n) = 4T(\frac{n}{2}) + O(n)$ + Cries & bitshifts O(n) ruthe on $= (\mathcal{N}_{u_{\mathcal{S}}})$ ingut length n hell see that, 1969 5: Konstrupe recursion Peurite (a,bo+20b) T6)=3T(2) + O(v) $= \left(3^{1} + 3^{0}\right)\left(\beta^{1} + \beta^{0}\right) - 3^{1}\beta^{1} - 3^{0}\beta^{0}$ $= O(\lambda_{1.24})$ Ore more ?- 1:sit multply becourts)